CASE HISTORY
A 62-year-old woman presented because of decreased vision. She had undergone hyperopic LASIK 12 years earlier at a different institution, and now she wanted another refractive procedure to regain spectacle independence. Examination showed incipient nuclear sclerosis in both eyes (OU). In the right eye (OD), uncorrected visual acuity (UCVA) was 20/150, best corrected visual acuity (BCVA) was 20/25, and manifest refraction (MR) was +4.25 -1.00 X 30. In the left eye (OS), UCVA was 20/100, BCVA was 20/25, and MR was +4.00 -1.00 x 155 with an addition of +2.25 D. Corneal asphericity measurements showed Q coefficients of -0.64 OD and -0.50 OS, consistent with the hyperopic ablation that causes central steepening and makes the cornea more prone. The patient was counseled about the possibility of a postoperative refractive surprise because of her history of prior IOL insertions. Many factors were discussed, including monovision with a spherical IOL and bilateral implantation of the aberration-neutral AT LARA 829MP extended depth of focus (EDoF) IOL. The patient chose the AT LARA IOL.

IOL power was determined using biometry measurements obtained with the IOLMaster 700 (Carl Zeiss Meditec) and the PANACEA IOL calculator (http://www.paneaciaeutoriccalculator.com/downloads.html) based on a target refraction of -0.25 D OU. Surgery was performed with the primary incision made on the steep corneal meridian and paired with a clear corneal incision 180° away to achieve astigmatism correction. Intraoperative aberrometry (ORA, Alcon Laboratories) confirmed the preoperatively selected IOL powers. At 1 month after the second eye surgery, MR was -0.25 -0.50 x 150 OD and -0.25 -0.25 x 45 OS. The patient’s UCVA was 20/20 at distance OU and J1 between 40 and 60 cm.

The AT LARA EDoF IOL can be considered a better choice than a multifocal IOL for pseudophakic correction in patients with a history of corneal refractive surgery. The AT LARA has an aberration-neutral optic with zero spherical aberration (SA), which provides excellent visual acuity over a wide range of focus from far to near intermediate distances, incorporates patented design and manufacturing technology that reduces visual symptoms, and features chromatic aberrometry optimization for increased contrast sensitivity. In addition, the EDoF optic of the AT LARA IOL allows for some tolerance to residual refractive errors. We have implemented the AT LARA EDoF IOL in 14 eyes with a history of hyperopic LASIK. Although our series is small, the outcomes have been excellent. All of the patients achieved spectacle independence for performing daily activities, including reading. A laser enhancement was necessary in only one eye; this rate of just 7.1% compares very favorably with the incidence of 42.9% reported by Mutluoglu et al.1

In addition, the effect of prior refractive surgery on spherical aberration (SA) requires particular attention. Because SA reduces retinal image contrast and affects visual quality, especially under mesopic conditions, most modern IOLs feature an aspheric optic that induces negative SA, thereby minimizing total SA by compensating for the slightly positive SA (+0.27 μm) of the natural cornea.2,3 Whereas a keratorefractive surgery for correcting myopia causes corneal SA to become more negative,4 implanting an aspheric IOL with negative SA in an eye with a history of hyperopic LASIK could worsen the existing negative SA and be expected to have an adverse effect on quality of vision.

Taking the above mentioned factors into account, the AT LARA EDoF IOL can be considered a better choice than a multifocal IOL for pseudophakic correction in patients with a history of corneal refractive surgery. The AT LARA has an aberration-neutral optic with zero SA, provides excellent visual acuity over a wide range of focus from far to near intermediate distances, incorporates patented design and manufacturing technology that reduces visual symptoms, and features chromatic aberrometry optimization for increased contrast sensitivity. In addition, the EDoF optic of the AT LARA IOL allows for some tolerance to residual refractive errors. We have implanted the AT LARA EDoF IOL in 14 eyes with a history of hyperopic LASIK. Although our series is small, the outcomes have been excellent. All of the patients achieved spectacle independence for performing daily activities, including reading. A laser enhancement was necessary in only one eye; this rate of just 7.1% compares very favorably with the incidence of 42.9% reported by Mutluoglu et al.1 We believe that the PANACEA calculator is particularly useful for IOL power calculations in eyes with previous refractive surgery because it uses information on anterior and posterior corneal surface and corneal asphericity. Nevertheless, given the known difficulties of estimating the IOL power in these cases, we aim for a slightly myopic target refraction (-0.25 to -0.50 D; usually the first negative value in the IOL power calculation). The average postoperative refraction achieved in our series of 14 eyes with a history of hyperopic LASIK was 0.3D, and although we found it was associated with very good functional outcomes, other surgeons might prefer choosing a target closer to emmetropia. It should be noted, however, that we do not perform simultaneous bilateral eye surgery. By operating on just one eye first, we can adjust the refractive target in the second eye depending on the patient’s satisfaction with vision after the first eye surgery.

Appropriate preoperative counseling is critical for setting patient expectations. Patients are told that quality distance and intermediate vision is the greatest strength of the AT LARA EDoF IOL, and that glasses with a low addition may be needed for reading. They are also informed about the possibility of an inaccurate IOL power calculation with the need for a laser enhancement. We have found, however, that intraoperative aberrometry can be an extremely useful tool for obtaining excellent refractive and functional results in these cases to avoid a second procedure.

CONCLUSION
Achieving consistently excellent results implanting the AT LARA IOL in patients with virgin corneas gave us the confidence to use it in the more challenging group of patients with prior keratorefractive surgery. The aberration-neutral optic of the AT LARA makes it particularly well-suited for use in patients with a history of a hyperopic refractive procedure, but the AT LARA IOL has many advantages that make it an excellent option in patients with prior myopic LASIK. In all cases of virgin and operated corneas, careful candidate selection and preoperative counseling are critical for achieving success and patient satisfaction postoperatively.

References

Dr. Claudio Orlich, Orlich is the Medical Director of Clinica 20/20, San José, Costa Rica, where he specializes in corneal and refractive surgery. He is a consultant to Carl Zeiss Meditec.

CASE STUDIES
Successful presbyopia correction after hyperopic LASIK using the AT LARA EDoF IOL
By Dr. Claudio Orlich – San José, Costa Rica

Figure 1. Tangential map from Scheimpflug camera imaging (Pentacam HD, Oculus) shows abnormal prolene corners as a result of the central steepening generated by hyperopic LASIK.