CT LUCIA from ZEISS
A Scientific Report
Lens properties and specifications

CT LUCIA, the hydrophobic, monofocal C-loop IOL from ZEISS with its patented aspheric ZEISS optics, featuring a 360-degree square–edge design for low PCO rates. ZEISS CT LUCIA® is made with ultra-high purity hydrophobic acrylic and a proprietary cryo-lathing process. Supplied in an easy-to-use, fully preloaded injector system, ZEISS CT LUCIA is available as both a clear UV-blocking and a yellow UV-blocking, blue-light filtering IOL.

Hydrophobic - Hydrophilic
Surface properties

Hydrophobic Drop

Hydrophilic Drop

* ZEISS CT LUCIA
Hydrophobic Acrylic

- Copolymer of acrylates/methacrylates
- Covalently bound benzotriazole-class UV absorber
- Refractive index is 1.49 (same as PMMA)
- Exceptional clarity – glistening-free
- Water content: 0.3%
- Heparin coated IOL surface
- Available in yellow and clear
- The IOL comes in a fully preloaded injector system

HSM – (Heparin surface Modification)

Heparin coating on the IOL surface results in haptic non-sticking to the optic

Light Transmission Properties

CT LUCIA 601P UV Light Transmission Properties
At least 90% above 410nm, less than 10% below 375nm

CT LUCIA 601PY UV Light Transmission Properties
At least 90% above 410nm, less than 10% below 400nm
Clinical evaluations and Scientific studies

Comparative evaluation regarding the implantation, unfolding and centration behavior of ZEISS CT LUCIA® vs. AcrySof®IQ

During statistical evaluation of clinical implantation data, it was identified that the ZEISS CT LUCIA 601P performed smoother during unfolding and faster during centration than other competitive lenses.

Implantation and Unfolding Behavior

Comparison and time measurement ZEISS CT LUCIA vs. AcrySof®IQ

One sample operation, showing the comparison of an implantation of the ZEISS CT LUCIA 601P in comparison to an implantation of the AcrySof®IQ (SA60AT).
Conclusion

ZEISS CT LUCIA:
- shows a controlled and uncomplicated unfolding of the haptics, as well as a consistent unfolding of the IOL during implantation\(^4\)
- shows faster centration after insertion in the capsular bag with less manipulation required compared to AcrySof\(^®\)IQ\(^4\)

"**ZEISS CT LUCIA shows faster centration after insertion in the capsular bag with less manipulation required compared to AcrySof\(^®\)IQ**"\(^6\)

The graph below shows the average implantation time of a ZEISS CT LUCIA\(^®\) 601 in comparison to the average implantation time of an AcrySof\(^®\)IQ (SN60WF) lens. The comparison is based on 27 ZEISS CT LUCIA 601P implantations versus 18 AcrySof\(^®\)IQ (SN60WF) implantations.
Sophisticated sharp edge design

The following images were produced during a test carried out at the Technical University of Berlin using a Scanning Electron Microscope (SEM) that produces images of a sample by scanning with a focused beam of electrons under 3 different resolutions (900μm, 200μm and 80μm), to prove the high quality of sharp edge design of the ZEISS CT LUCIA. The main focus was to visualize the critical areas of the IOL (haptic-optic transition and IOL edges).

The ZEISS CT LUCIA provides a sophisticated 3 μm radius sharp edge design to prevent early cell migration and Posterior Capsular Opacification (PCO). The proprietary polishing-free lathe cut manufacturing technology provides edge sharpness and edge integrity.

Scanning Electron Microscope (SEM) images 900μm

1. 900μm resolution angulated anterior picture of CT LUCIA - haptic-optic transition
2. 900μm resolution side view picture of CT LUCIA 601P - IOL body
3. 900μm resolution frontal posterior picture of CT LUCIA - haptic-optic transition
4. Magnified view of CT LUCIA haptic-optic transition
Sharp edge design of the CT LUCIA 601P

“... most researchers agree that the best IOL is one that has a sharp edge for the entire 360 degrees of the posterior surface of its optic.”

Scanning Electron Microscope (SEM) images 200μm

Scanning Electron Microscope (SEM) images 80μm
Posterior edge design – CT LUCIA 601P

4. 200μm resolution frontal posterior picture of CT LUCIA - haptic-optic transition

5. 80μm resolution angulated anterior picture of CT LUCIA - haptic-optic transition

6. 80μm resolution side view picture of CT LUCIA 601P - IOL body

Competitive edge design – Alcon AcrySof®

Scan of Alcon AcrySof® (SN60AT) IOL

Scan of Alcon AcrySof® (MA60CT)
PCO - Posterior Capsular Opacification:

Posterior capsular opacification (PCO) is the most frequent complication of cataract surgery. Advances in surgical techniques, intraocular lens (IOL) materials, and designs have reduced the PCO rate; however, it remains a significant problem resulting in suboptimal outcome of cataract surgery.¹¹

Edge design comparison

ZEISS CT LUCIA

Square Edge*

Square Edge **inhibits** the migration of lens epithelial cells (LEC)

“When a square-edged IOL is implanted, lens epithelial cells are blocked from migrating past the barrier, preventing PCO development.”¹²

“The square edge of the optic can block the lens epithelial cells from growing across the posterior capsule. This effect has been well-demonstrated in hydrophobic acrylic, silicone and PMMA lenses.”¹³

Round Edge

Round Edge **allows** the migration of lens epithelial cells (LEC)

“When a round-edged IOL is implanted, lens epithelial cells can migrate past the barrier, and onto the posterior capsule where they can proliferate, obscuring the patient’s vision.”¹²
Glistening Study

Definition
Acrylic foldable IOLs have grown in popularity due to stable clinical results and a low incidence of posterior capsular opacification. One concern of these lenses is the potential to form glistenings. As documented extensively in peer-reviewed literature, glistenings commonly occur in certain hydrophobic acrylic IOL materials, and clinical significance has been reported to range from none to a significant loss in visual acuity and contrast sensitivity.

Glistenings are fluid accumulation in the microvacuoles of the optic, which are likely caused by temperature changes rather than material changes. The AcrySof® lens material (Alcon, Fort Worth, Texas) is particularly susceptible to develop such glistenings. Incidence rates have been published ranging between 11% to 60%.13

Controversy exists regarding the true impact of glistenings on functional vision. While some papers report that glistenings have no influence on visual functions14, there are also reports that argue that glistenings lead to visual function deterioration15, affect contrast sensitivity in particular at high spatial frequencies16, generate more night vision disturbances17, and in some extreme cases, explantations due to severe glistenings has been reported17.

Method
For the assessment of the glistening properties of IOL materials, a commonly employed method uses rapid temperature changes in order to provoke glistening formation (see for example Pagnoulle et al., JCRS 2012, 38:1271–1277). This was not the method of choice in the present investigation. Glistenings induced by rapid temperature fluctuations may be transient, and disappear again after a certain equilibration time at the target temperature. Hence this method (using temperature fluctuations) may not adequately reproduce the situation of long term implantation in the eye. Therefore, we chose to incubate the IOLs continuously at 35 °C in BSS, for a total period of two years, as a model of the situation in the eye. IOLs are stored in special lens holders and submerged fully in a Balanced Salt Solution (BSS). The samples are kept at 35°C in a water bath. The BSS solution is exchanged every four weeks. A total of 60 CT LUCIA 601PY IOLs are incubated, and a total of 20 AcrySof®IQ (SN60WF) IOLs.

Glistenings are evaluated by a subjective observation method, using a slit lamp. Severity of Glistenings is graded as:
0: no glistenings, 1: 1 – 10 Glistenings per IOL, 2: 11 – 50, 3: 51 – 100, 4: more than 100

The following factors may influence the formation of glistening on IOL material: IOL manufacturing technique, IOL packaging / storage, Patient-associated conditions (leading to breakdown of the blood-aqueous barrier), ocular medications
Results

The results are extracted from an interim report of the observation after a total incubation time of twenty-four months.\(^\text{18}\)

The ZEISS CT LUCIA showed no glistenings (Grade 0) over the entire duration of the subjective observation method, in comparison to AcrySoft\(^\text{®}\)IQ, which developed a glistening severity of “4” in 91\% of the observed cases.\(^\text{18}\)

Conclusion

The ZEISS CT LUCIA has excellent no-glistening results thanks to its ultra-high purity hydrophobic acrylic and a proprietary cryo-lathing process.
When changing your IOL makes a big difference.

ZEISS CT LUCIA
Optic Design
- **Monofocal, spheric**

Material
- Hydrophobic acrylic with heparin coated\(^1\) surface

Optic Diameter
- 6.0 mm

Total Diameter
- 13.0 mm

Haptic Angulation
- 5°

Lens Design
- Single-piece

Incision Size
- 2.2 – 2.6 mm (depending on diopter)

Company Labeled A-Constant\(^2\)
- 119.1

Diopter Range
- From +4.0 to +34.0 D, 0.5 D increments

ACD
- 5.65

Implantation in
- Bag

Optic Design
- **Monofocal, aspheric (aberration correcting)**

Material
- Hydrophobic acrylic with heparin coated\(^1\) surface and blue light filter

Optic Diameter
- 6.0 mm

Total Diameter
- 13.0 mm

Haptic Angulation
- 5°

Lens Design
- Single-piece

Incision Size
- 2.2 – 2.6 mm (depending on diopter)

Company Labeled A-Constant\(^2\)
- 119.1

Diopter Range
- From +4.0 to +34.0 D, 0.5 D increments

ACD
- 5.65

Implantation in
- Bag

CT LUCIA\(^\circledR\) 601PY – fully preloaded

Optic Design
- **Monofocal, aspheric (aberration correcting)**

Material
- Hydrophobic acrylic with heparin coated\(^1\) surface

Optic Diameter
- 6.0 mm

Total Diameter
- 13.0 mm

Haptic Angulation
- 5°

Lens Design
- Single-piece

Incision Size
- 2.2 – 2.6 mm (depending on diopter)

Company Labeled A-Constant\(^2\)
- 119.1

Diopter Range
- From +4.0 to +34.0 D, 0.5 D increments

ACD
- 5.65

Implantation in
- Bag

Injector/Cartridge Set
(relevant for CT LUCIA\(^\circledR\) 201P, CT LUCIA\(^\circledR\) 601P and CT LUCIA\(^\circledR\) 601PY)
- **BLUEJECT\(^\text{TM}\) 2.0 Injector**
 - for diopter range +4.0 to +24.0 D
- **BLUEJECT 2.2 Injector**
 - for diopter range +24.5 to +30.0 D
- **BLUEJECT 2.4 Injector**
 - for diopter range +30.5 to +34.0 D

\(^1\) Fragment of heparin used in IOL surface coating with no pharmacological, immunological or metabolic action

\(^2\) For optimized A Constants and ACD Constants go to the ULIB web site.
References

1 Bosc JM, Rosca G. Clinical results with the EC-1Y; satisfaction after 1 year. Powerpoint

2 Fragment of heparin used in IOL surface coating with no pharmacological, immunological or metabolic action

3 Data on file, Review R&D injector testing, 2014

4 David J Apple International Laboratory for Ocular Pathology, International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Chairman: G.U. Auffarth, MD, PhD, FEBO., Comparative evaluation regarding the implantation, unfolding and centration behavior of ZEISS CT LUCIA® vs. AcrySof®IQ, Heidelberg 2015. Study not published. Data on file.

5 Video footage, CT LUCIA Study Results - The David J Apple International Laboratory for Ocular Pathology International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Chairman: G.U. Auffarth, MD, PhD, FEBO. Study not published. Data on file.

6 During the statistical evaluation of implantation times, comparing the ZEISS CT LUCIA and the AcrySof® (SN60WF), the ZEISS CT LUCIA performed with a total implantation time of 70 seconds versus the AcrySof® (SN60WF) with 90 seconds. The ZEISS CT LUCIA showed a faster centration after insertion in the capsular bag with less manipulation required, compared to AcrySof® (SN60WF). The measured implantation steps included: insertion, injection, unfolding and centration. Details of the evaluation can be viewed as part of the supporting research, carried out by the David J Apple International Laboratory for Ocular Pathology, International Vision Correction Research Centre (IVCRC), Department of Ophthalmology, University of Heidelberg, Chairman: G.U. Auffarth, MD, PhD, FEBO. Study not published. Data on file.

7 Data on file

8 Review of Ophthalmology, IOL Design Closes Off PCO, 01/2003

12 International Vision Correction Research Centre (IVCRC), The David J Apple International Laboratory for Ocular Pathology, Department of Ophthalmology, University of Heidelberg, Chairman: G.U. Auffarth, MD, PhD, FEBO, Instructional course on the use of the CT LUCIA Family, ESCRS 2015

13 Eye World 2011, EW Supplement: Customizing cataract and corneal refractive surgery, Identifying the best acrylic IOL materials and assessing the visual significance of glistening, by William Trattler, M.D.

18 Data on file